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SYSTEMS AND METHODS FOR 
CLASSIFYING MOSQUITOES BASED ON 
EXTRACTED MASKS OF ANATOMICAL 

COMPONENTS FROM IMAGES 

BACKGROUND 

Taxonomy is the process of classifying organisms in 
nature. Entomology is the study of insect organisms. Tax­
onomy in the context of entomology is a relatively obscure 
discipline in the era of modern sciences. Very few people 
want their professional careers spent with hours poring 
through a microscope trying to identify what genus and 
species an insect is. In the context of mosquitoes, there are 
close to 4500 different species of mosquitoes, and training to 
identify all of these mosquitoes is hard if not impossible. In 
countries like India, Bangladesh and even the US, it is 
simply not possible to train professionals to identify all 
mosquitoes that are endemic in these countries ( e.g., there 
are 400 species of mosquitoes endemic to India; and about 
150 species in the US). With increasing travel and global 
connectivity among nations, mosquitoes can invade to 
newer places, and identifying the "new" mosquitoes 
becomes impossible by local professionals. Mosquitos and 
other insects are considered "vectors" because they can 
carry viruses, bacteria, and strains of diseases and transmit 
them to humans. The term "vector" is therefore given its 
broadest meaning in the art of infectious diseases. 

Modern entomology updates have focused on eliminating 
or minimizing human involvement in classifying genus and 
species of mosquitoes during disease outbreak. There are 
close to 4500 different species of mosquitoes in the world 
spread across 45 or so genera. Out of these, only handfuls of 
species across three genus types spread the deadliest dis­
eases. These mosquitoes belong to Aedes (Zika, Dengue, 
Chikungunya, Yellow Fever), Culex (West Nile Virus, and 
EEE), and Anopheles (Malaria). Within these three genera, 
the deadliest species are Aedes aegypti, Aedes albopictus, 
Culex nigripalpus, Anopheles gambiae and Anopheles ste­
phensi. When a mosquito-borne disease, say Dengue affects 

2 
studying subjects through a microscope, and identifying 
specimens one by one. This is impossibly cumbersome if the 
goal is to only detect a particular type of"foreign" mosquito. 

Current disease models rely upon proper classification of 
infection vectors. The entomology classification systems 
need to be improved for use in specialized and detail 
intensive instances, such as the hypothetical above. A need 
exists in the art of entomological classification to include 
algorithms that are adaptable for use in resolving important, 

10 yet hard to pinpoint issues, such as identifying the hypo­
thetical "foreign" mosquito that did indeed get trapped. 
Updated algorithms are needed to provide researchers with 
options in entomological classification for specialized situ­
ations, such as the hypothetical random occurrence of new 

15 insects affecting a local population. 
Continuing with the "foreign" mosquito example, the art 

of entomological classifications needs improved techniques 
and models that have been trained with images of the foreign 
mosquito (provided by international partners) to identify the 

20 genus and species directly from initial observations. In the 
alternative, a need should be met to enable running the 
foreign mosquito through models trained with other mos­
quitoes. These techniques would allow researchers to notify 
public health officials that a new mosquito, that appears to be 

25 previously unknown in a given location, has been currently 
trapped. In either case, there is significant benefit for public 
health at borders. 

As detailed in this disclosure, to address the above noted 
inadequacies, digitizing anatomies of mosquito specimens 

30 across the globe (with citizen and expert involvement) will 
help create a massive repository of mosquito anatomy 
images tagged with genus and species types. This repository 
could then be used for training personnel, and also for 
automatic identification using algorithms in this disclosure 

35 (when a picture is uploaded). For instance and without 
limiting this disclosure, the Florida Medical Entomology 
Lab in Vero Beach trains a very small number of personnel 
each year (both international and also domestic military 
personnel) in the detailed art of insect classification. From 

40 prior investigations, space is very limited, and many are 
turned away from these kinds of training programs. With a 
digital repository in place, the training programs can be 
globally expanded as well with potentially thousands of 

a region, then identifying the presence of the particular 
vectors for Dengue (i.e., Aedes aegypti and Aedes albopic­
tus) becomes important. This is hard and expensive. For 
instance in India, there are close to 450 types of mosquitoes 
spread all over. Accordingly, public health experts lay traps 45 

in disease prone areas, and sometimes hundreds of mosqui­
toes get trapped. Now, however, they can identify which of 
those is the genus and species they are looking for. Because, 
once they identify the right mosquitoes, they can then take 
those mosquitoes to the lab for DNA testing etc. to see if the 
pathogen (i.e., virus) is there within the trapped mosquito. 
Naturally, if they find a reasonable large number of those 
mosquitoes with the virus in them, there is a public health 
crisis, and corrective action needs to be taken. 

images to train interested personnel. 
The need for these kinds of improvements in entomologi-

cal classification is apparent in at least one example. Many 
states and counties in India ( especially those at borders) 
have been and are currently willing to pay for such a service. 
Such a service with appropriate mosquito traps and can be 

50 deployed in international airplanes, ships and buses. 
In another expression of the needs in this arena, soldiers 

going to countries where mosquito-borne diseases are com­
mon are routinely trained to help local communities identify 
mosquitoes and other vectors for disease. A digital reposi-

Other efforts have focused on detecting foreign mosqui­
toes at borders. This is a problem that is attracting a lot of 
global attention-the need to identify if a mosquito in 
borders of a nation (land or sea or air or road) is a foreign 
mosquito. For instance, consider a scenario in which mos­
quitos, e.g., both a domestic vector and one non-native to the 
US, are on a vehicle entering the US borders. 

55 tory can train soldiers remotely without having to physically 
travel to a location in need for these services. Furthermore, 
soldiers and even personnel from government agencies 
engaged in traveling and residing overseas might benefit 
from a trap in the bases and/or homes that can tell them 

60 decipher the type of mosquitoes trapped in their vicinity, and 
how dangerous they are. 

Assuming that borders do have mosquito traps, it is likely 
that this "new" breed of mosquito could get trapped along 
with other local mosquitoes. The question here is how public 
health authorities identify that a "foreign" mosquito is in one 65 

such trap. Current entomology classification systems would 
require going periodically to these traps, collecting and 

BRIEF SUMMARY OF THE DISCLOSURE 

This disclosure presents a system to design state of the art 
artificial intelligence (AI) techniques, namely techniques 
based on mask region-based convolutional neural networks 
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to extract anatomical components of mosquitoes from digital 
images and archiving them permanently based on genus, 
species and other taxonomies. 

In one embodiment, a system for identifying a genus and 

species of an insect utilizes an imaging device configured to 

generate images of the insect. A computer processor is 

connected to memory storing computer implemented com­

mands in software, with the memory receiving the images. 

The software implements a computerized method with 10 

respective images by applying a first convolutional neural 

network to the respective images to develop at least a first 

feature map and a second feature map based on anatomical 

pixels at corresponding image locations in the respective 15 

feature maps, the anatomical pixels corresponding to a body 
part of the insect; calculating an outer product of the first 
feature map and the second feature map; forming an inte-

4 
map and the second feature map; forming an integrated 

feature map from the first feature map and the second feature 

map; extracting fully connected layers from respective sets 

of integrated feature maps that have had at least the first 

convolutional neural network applied thereto; and applying 

the fully connected layers to a classification network for 

identifying the genus and the species of the insect. 

BRIEF DESCRIPTION OF THE FIGURES 

The patent application file or the patent issuing therefrom 

contains at least one drawing executed in color. Copies of 

this patent or patent application publication with the color 

drawing(s) will be provided by the Office upon request and 

payment of the necessary fee. Reference will now be made 

to the accompanying drawings, which are not necessarily 
grated feature map from the first feature map and the second 20 drawn to scale. 
feature map; extracting fully connected layers from respec­
tive sets of integrated feature maps that have had the first 
convolutional neural network applied thereto; and applying 
the fully connected layers to a classification network for 25 

identifying the genus and the species of the insect. 
In another embodiment, a system for identifying a genus 

and species of an insect utilizes an imaging device config­
ured to generate images of the insect. A computer processor 30 

is connected to memory storing computer implemented 
commands in software, and the memory receives the images. 
The software implements steps of applying a first convolu­
tional neural network to the respective images to develop at 

35 
least a first feature map directed to anatomical pixels at 
corresponding image locations in the respective images, the 
anatomical pixels corresponding to a body part of the insect; 

FIG. 1 illustrates one representative sample in a dataset 
for each anatomy of three genera classified according to this 
disclosure. 

FIG. 2 illustrates one representative sample of a Bilinear 
CNN architecture used in example embodiments of this 
disclosure. 

FIG. 3 illustrates one representative image sample with 
visualization of a last layer convolution feature map in the 
dataset for each species classified, across multiple back­
grounds and phones, according to example embodiments of 
this disclosure. 

FIG. 4 illustrates a grid plot of a confusion matrix for a 
thorax data set according to one example embodiment of this 
disclosure. 

FIG. 5 illustrates a graphical representation of Receiver 
Operating Characteristics of a thorax data set in example 
embodiments of this disclosure. 

applying a second convolutional neural network to the FIG. 6 illustrates a graphical representation of a confusion 
40 matrix of an abdomen data set in example embodiments of 

respective images to develop at least a second feature map this disclosure. 
directed to anatomical pixels at corresponding image loca­
tions in the respective images, said anatomical pixels cor­
responding to the body part of the insect; calculating an 

FIG. 7 illustrates a graphical representation of Receiver 
Operating Characteristics of an abdomen data set in example 
embodiments of this disclosure. 

outer product of the first feature map and the second feature 45 FIG. 8 is a schematic diagram of a convolutional neural 
network ("CNN") used in a computer environment config­
ured to implement the computerized methods of this disclo­
sure. 

map; forming an integrated feature map from the first feature 
map and the second feature map; extracting fully connected 
layers from respective sets of integrated feature maps that 
have had the first convolutional neural network and the 50 

second convolutional neural network applied thereto; and 
applying the fully connected layers to a classification net-
work for identifying the genus and the species of the insect. 

In another embodiment, a computerized method of iden- 55 

tifying a genus and species of an insect includes acquiring 
images of an insect and storing pixels data from the images 
in a computer memory in data communication with a 
computer processor. The computer processor performs the 60 

steps of applying at least one convolutional neural network 
to the respective images to develop at least a first feature 
map and a second feature map based on anatomical pixels at 
corresponding image locations in the respective feature 

65 
maps, said anatomical pixels corresponding to a body part of 
the insect; calculating an outer product of the first feature 

FIG. 9 is an example computer environment in which the 
systems and methods of this disclosure may be calculated, 
plotted, and output for use according to example embodi­
ments of this disclosure. 

DETAILED DESCRIPTION 

There are close to 50 different species of mosquitoes in 
Hillsborough County in Florida. But to keep the problem 
tractable, without losing the focus on public health, this 
disclosure looks for vectors of critical interest. From among 
the hundreds of mosquitoes trapped in respective traps, 250 
specimens were identified as critically important vectors by 
numerous taxonomy partners. These vectors were catego­
rized into three species each belonging the three genera­
Aedes 100, Anopheles 115 and Culex 120. The dataset is 
presented in Table 1. Importantly, mosquitoes belonging to 
the Aedes 100, Anopheles 100 and Culex 120 genera, are 
also the deadliest vectors across the globe. 
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TABLE 1 

Relevant Details on our Dataset of Mosquito Species [1] 

Genus 

Number 
of Image 

Thorax Abdomen Wing Leg Samples Diseases Spread 
Geographical 
Location 

Aedes 981 875 1173 1607 1000 Chikungunya, Dengue, 
Eastern Equine 
Encephalitis, West 
Nile, Yellow Fever, 
Zika 

Africa, Asia, North 
America, South 
America 

Anopheles 1186 1042 2160 2690 1250 Malaria Africa, Asia, North 
America, South 
America 

Culex 897 840 1095 1468 1000 Eastern Equine 
Encephalitis, St. 
Louis Encephalitis, 
West Nile 

Africa, Asia, North 
America, South 
America 

Subsequently, each specimen was imaged under normal 
indoor light conditions with imaging devices, such as but not 
limited to, ten different smartphones, across three orienta­
tions, and on three different backgrounds. To capture the 
images generated by the imaging devices, the smart-phone 
was attached to a movable fixture above a flat surface on 
which the mosquito was placed. The ten phones used for 
imaging were Samsung Galaxy SS (3 phones), Samsung 
Galaxy S9 (2 phones), iPhone 7 (2 phones), iPhone 8 plus (2 
phones), and Pixel 3 (1 phone). As a result of this process, 
3550 images in total were captured by a team of investiga­
tors. FIG. 1 illustrates one representative image from a 
dataset of each of the three genera (spread across three 
genera) classified in this paper. 

After that, as described herein, a Mask-RCNN 200 based 
algorithm has been used to segment anatomies from a 
full-body mosquito image. In result, this disclosure reports 
extracting 3064 thorax, 2757 abdomen, 4459 wing, and 
5533 leg anatomies from 3250 full-body mosquito images. 
This embodiment kept 300 images for testing the ensemble 

20 
Classifications of other portions of a subject anatomy are 
also within the scope of this disclosure. 

The problem of classifying anatomies from smartphone 
images is complex and challenging. Some of the major 
challenges include poor image quality and very subtle 

25 intra-class variance. The differences in anatomy across dif­
ferent classes of genus are so subtle that they can be missed 
by many factors like anatomy orientation in the image, 
background noise, blurriness, and lighting condition. For 
instance, while both Aedes 100 and Anopheles 115 genera 

30 have dark wings, Anopheles 115 has additional tiny dark 
spots on their wings (FIG. l(g)). Similarly Aedes 100 has a 
black and white pattern on the abdomen (FIG. l(c)) whereas 
Anopheles 115 has only a black abdomen (FIG. l(t)). To 
overcome these challenges, this disclosure presents a neural 

35 network architecture based on the bilinear convolutional 
neural network (B-CNNs) [6] as shown in FIG. 2 200. The 
B-CNN architecture 200 suits perfectly to the problem 
considering it includes learning the subtle differences 
between similar looking classes. 

of four anatomy models. Due to occlusion, camera angle and 40 

mosquito orientation, not each anatomy is visible in every 
full-body image that caused the unequal distribution of 
anatomies in the dataset. 

In this architecture, the disclosure includes two convolu-
tional neural networks (CNN) NA205 and NB 215 to extract 
two feature maps 210,220 from the convolutional layer, one 
from each network 205, 215. NA and NB can be the same 
or different networks but their feature maps should be These mosquitoes belong to three classes of genera­

Aedes 100, Anopheles 115 and Culex 120. Within Aedes 
genus 100, each belongs to Aedes aegypti, Aedes taenio­
rhynchus, andAedes infirmatus species of mosquitoes. Simi­
larly for Anopheles genus 115, each belongs to Anopheles 
crucians, Anopheles quadrimaculatus, and Anopheles ste­
phensi. Considering the Culex genus 120, it has Culex 
coronator, Culex nigripalpus, and Culex salinarius species. 
To make sure, anatomical images do not get distorted, this 
disclosure includes padding the images with white back­
ground pixels to maintain the square shape as shown in FIG. 
1 (a-l). Further, this disclosure includes dividing the 
anatomy dataset into three subsets-training, validation, and 
testing with the ratio of70%, 20%, and 10% as respectively 
considered examples. 

The architecture of a Neural Network algorithm classifies 
the anatomy images taken from a smartphone into 3 genus 
categories-Aedes 100, Anopheles 115, and Culex 120. The 
methods, systems, and apparatuses of this disclosure trained 
four different neural network algorithms, one for each 
anatomy to predict the genus category. Since each network 
is based on the similar architecture, to reduce the redun­
dancy, this disclosure includes, but is not limited to, an 
example algorithm trained on the thorax image FIG. 1 (a-l). 

45 distinct. In one embodiment, the CNN may be a first 
convolutional neural network, and in a different embodi­
ment, there may be a first convolutional neural network and 
a second convolutional neural network. For example, if both 
are the same network then feature maps 210, 220 will be 

50 extracted from different convolutional layers to make them 
distinct. Mainly, this architecture consists of six elements 
~=(NA, NB, fA, fB, P, C). In one non-limiting aspect, fA and 
fB are the feature maps 210,220 (i.e., a first feature map 210 
and a second feature map 220) obtained from the convolu-

55 tion layer of NA 205 and NB 215, Pis the pooling function 
and C is the classification function. In the problem, both fA 
and fB consists of M number of filters, FIG. 8, Ref. 806, 
where M=128. Each filter 806 learns a specific feature at 
each layer 205, 210, 808. In B-CNN architecture, this 

60 disclosure calculates an outer product of feature maps fA 
210 and fB 220 at each location of the image, I 250. The 
outer product of fA and fB at a location 1 in an image I 250 
(shown in FIG. 2) is computed as (fA(l,I)r fB (!,I)), where 
T is a transposed vector value. The outer product combines 

65 both CNN feature maps 210, 220 at each corresponding 
image location in respective feature maps and results in 
pairwise feature interactions in a translation invariant man-
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ner. These pairwise feature interactions capture the subtle 
and minute details of anatomical pixels from the images, 
wherein the anatomical pixels correspond to a body part of 
a subject insect in the class. For example, the Anopheles 
genus 115 has black wings with dark spots, so the feature 
map from NA 205 might capture the black color indepen­
dently while another feature map at the same location from 
NB 215 might capture the dark spots. Using these feature 
maps independently might not differentiate between the 
wings of Anopheles and Aedes genus, as color of both of 10 

their wings is dark. As a result of the outer product of both 
feature maps, it will produce one integrated feature map 
containing information from both of them. The resultant 
feature map can comprehend that the Anopheles wing has 
black color with dark spots. This will improve the accuracy 15 

and the confidence of the model. Pooling function P per­
forms the summation on the outer product of all the gener­
ated matrices to transform them into a single matrix and then 
further reshape it to ID vector 230 to feed as an input to the 
fully connected layer 240, used for classification function C. 20 

In this work, both NA and NB are the same CNN networks 
based on the ResNet50 [4] 800 architecture shown in FIG. 
8. 

It was trained on ImageNet [2] dataset to use a pre-trained 
model. ImageNet dataset consists of more than 14 million 25 

images distributed across 1000 classes. To make fA 210 and 
fB 220 learn different features, the system extracted them 
from different CNN layers of ResNet50 architecture, for 
example, one layer is res3c_branch2a (62nd layer) as fA210 
and another is res3d_branch2b (75th layer)) as fB 220 at 30 

each location of an Image 250. ResNet50 is a deep convo­
lutional network with residual connections between sequen-
tial layers. The residual connection in this architecture helps 
in preventing gradient vanishing problem. 

Using the same architecture for both NA and NB helps in 35 

reducing the memory overhead that could have caused by 
having two different networks. 

Now that the rationale of a neural net architecture for 
anatomy classification is clarified in one non-limiting 
example, there are several key parameters in the architecture 40 

(called as hyperparameters) that need to be optimized. This 
disclosure elucidates these below, following which the final 
architecture for genus identification based on thorax images 
FIG. 1 a, e, i, will be presented. Also one may note that since 
the four non-limiting and example problems of interest to 45 

this paper (thorax, abdomen, wings and legs) all relate to 
classifying anatomies, the choice ofhyperparameters are not 
going to be too different for each problem. Also, the choice 
of hyperparameters are finalized through repeated training 
and validation on the data set. The examples of this disclo- 50 

sure do not present all details of all hyperparameters that 
have been attempted during training in this paper, but only 
discuss choices of example hyperparameters that together 
gave the highest accuracies and contextual correctness in 
this non-limiting disclosure describing training and valida- 55 

tion on a mosquito image dataset. 
a). Image Resizing: To keep the images consistent, the 

images need resizing. This disclosure shows collected 
data from multiple smartphones, collecting data on 
anatomies of different resolutions. To bring uniformity, 60 

and reduce the image size (for faster training without 
loss of quality), this disclosure includes, but is not 
limited to, resizing each input image to 200x200 pixels 
irrespective of their original size. Finally, one non­
limiting step normalized the RGB value of each pixel 65 

of the image by dividing it by 255 before training 
started. 

8 
b ). Dealing with imbalanced class: Since an anatomy 

dataset is imbalanced, the model will develop a bias 
towards the majority class. To overcome this, this 
disclosure shows using the cost-sensitive learning 
method that assigns higher weight to minority classes 
based on their sample counts. Weights are determined 
by Algorithm 1. The class weights of each class for 
each anatomy are shown in Table 2. The algorithm will 
impose a high cost penalty in case of minority class 
misclassification. 

TABLE 2 

Class Weight Details 

Anatomy Aedes Anopheles Culex 

Thorax 1.221 1.0 1.341 
Abdomen 1.189 1.0 1.246 
Wing 1.831 1.0 2.014 
Leg 1.565 1.0 1.711 

c ). Optimizer: An optimizer is an algorithm which helps 
converge an architecture during training from an initial 
state to the optimized one where the loss is minimum. 
In this study, the disclosure employs Stochastic Gradi­
ent Descent (SGD). This optimizer helps in fast con­
vergence. 

d). Loss Function: This disclosure employed the categori­
cal cross entropy loss function in this paper. This 
function minimizes the divergence of predicted and 
actual probability function without biasing towards any 
particular class. This is in comparison with other loss 
functions like focal loss and triplet loss functions that 
work better when variations in terms of complexities of 
entities within classes and their inter-variabilities are 
higher, neither of which is not true for our problem. 

e ). Learning Rate: This disclosure includes using Reduce 
Leaming Rate On Plateau [10] technique. This tech­
nique reduces the learning rate by a factor of0.5 when 
there is no improvement seen on validation loss for 5 
epochs. Initial learning rate was set to be le-6. This 
technique is simple and effective for the example, 
non-limiting problem in this paper. 

f). Architecture Fine-tuning and Compensating for Over­
filling for Genus classification: Having discussed 
choices for key hyperparameters in the architecture, 
this disclosure continues with information regarding 
how the architecture is trained and fine-tuned for genus 
classification. Many steps are involved here including 
decision on which layer to start from the ResNet50 
network shown in FIG. 8, how to add remaining layers 
for individual genus classification problems, how to 
assign weights to the feature maps, how to avoid 
overfitting problems, and finally, when to stop the 
training. Usually, a CNN architecture consists of sev­
eral convolutional layers. Each of these layers learns 
different features from input image in training. While 
initial layers learn low-level features like edges or 
curves, a final few layers learn high-level features like 
patterns in wings or legs. Therefore, while exporting a 
pre-trained model for transfer learning, it is important 
to select right layer to extract the feature. In one 
example of this work, the classification initially started 
at layer 20 in the ResNet50 architecture. Starting from 
layers too early will lead to poor learning, and starting 
from layers too deep will likely lead to over-fitting and 
also induce computational overhead. 
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To start the training, one non-limiting example includes 
freezing the weights of ResNet50 layers and initializing the 
untrained fully-connected layers using Glorot uniform ini­
tialization technique [3]. 

In one example embodiment, this model was trained for 
a first 100 epochs with a large learning rate (0.001). This is 
because the large gradient updates triggered by the untrained 
weights of fully connected layers would wreck the learned 
weights in the ResNet50 layers. After 100 epochs, the 
system unfroze the ResNet50 layers and trained the com­
plete model for another 200 epochs with a small learning 
rate (le-6). One should note that during training (and as is 
common in complex classification problems), researchers 
identified that certain example models suffered from over­
fitting problems, which were compensate by infusing a 
combination of different regularization techniques between 
layers, namely dropout, and early stopping. Example 
embodiments use an early stopping technique to stop the 
training if the validation accuracy is not improved with a 
minimum delta of0.0009 for 30 consecutive epochs. [7], [5], 
[9]. 

10 
Second, the system derived the Receiver Operating Char­
acteristics ("ROC") plot and confusion matrix to interpret 
each model's performance independently. Third and finally, 
the system employed the soft-voting technique to merge the 
outputs from every anatomy model to make an aggregated 
decision on genus classification from a full-body mosquito 
image. 

In one first evaluation, the approach was to determine 
whether or not trained models are actually able to focus in 

10 on the pixels corresponding to anatomical components 
within the anatomy image to classify, while simultaneously 
being able to exclude the background pixels. To do so, once 
an input anatomy image is classified after the end of the 
Softmax layer, the computer traverses back into the model to 

15 identify the feature map for that particular image (at the 
conclusion of the last convolutional layer), and the weights 
corresponding to the class (i.e., the type of genus) that the 
image was identified with. 

Accordingly, one can denote the feature map for an image 
20 at Kernel kin the last convolutional layer as fk (i, j), and the 

weight of each kernel for class c as w"k, then, compute the 
g). The Finalized Architecture for Genus Classification 

based on 4 Anatomies: Table 3 illustrates the key 
parameters of the finalized architecture for all the three 
models based on thorax, abdomen and wing anatomy. 25 

The architecture of a leg anatomy based model is 
slightly different which is shown in Table 4. The term 
res3dbranch2b denotes the 75th layer of the ResNet50 
architecture, up to which was utilized for NA and 
res3c_branch2a (62nd layer of the ResNet50 utilized 30 

for NB). The remaining layers (elaborated upon below) 

expression, 

Mc(ij)<E.kwc J;.(ij) 

for each spatial location (i, j) in the convoluted image. Mc 
(i, j) essentially computes the importance of each feature 
map in the convoluted image when a classification is made. 
Subsequently, the value of Mc (i, j) in the convoluted image 
is projected back onto the corresponding pixels in the 
original image to create a heatmap. 

The higher the value of Mc (i, j), the warmer the color of 
those corresponding pixels in a corresponding heatmap. 
These are the pixels within the image that were used 
predominantly to make the classification decision. As such, 

Layer 

are added after that as specified in Table 3. The entries 
in the fields "Size In" and "Size Out" in the table refer 
to the dimensions of the input and output matrices of 
the corresponding layer. Next, the method, system and 
apparatus disclosed herein calculated the outer product 
of the last convolutional layer from NA and NB. Then, 
this disclosure shows the flattened final product to 
reshape it to one dimensional matrix. Further, the 
methods stacked four fully-connected layers to the 
architecture and performed a softmax operation to 
calculate the output probabilities for final genus clas­
sification into three categories (i.e., Aedes 100, Anoph­
eles 115 and Culex 120). 

TABLE 4 

Le Architecture 

Size In Size Out 

res3d_ branch2b (None, 25, 25, 128) (None, 25, 25, 128) 
(Layer 75 in ResNet50) (None, 50, 50, 256) (None, 25, 25, 128) 
res3a_branch2a 
(Layer 40 in ResNet50) 
Outer Product and res3d_ branch2b (1, 16384) 
Flattening and 

res3a_ branch2a 
dense 1 (1, 16384) 512 
dense 2 512 256 
dense 3 256 128 
dense _4 128 64 
so f trnax 64 

This disclosure also evaluates trained neural network 
models for genus classification based on anatomies from 
smartphone images using three evaluation strategies. First, 
the study visualizes the feature map obtained from the last 
convolution layer. This visualization will help the model 
understand the kind of features that the models are learning. 

35 while analyzing the heat map, if most of the higher inten­
sities pixels belong to the critical anatomical components of 
the mosquito image, then one can trust the model that it has 
been trained adequately, as elaborated below. 

In FIG. 3, this disclosure specifically highlights one 
40 representative heat map image for each anatomy within all 

three genus categories Aedes 300, Anopheles 315, and Culex 
320. FIG. 3 shows that irrespective of the background, 
camera or image quality, the pixels with the highest inten-

45 

50 

55 

60 

sities are concentrated in anatomical component of the 
image. 

The results on accuracy of classification for each anatomy 
model has been reviewed independently. To recall, this 
process started by having at least one image dataset of 3064 
thorax images, 2757 abdomen images, 4459 wing images, 
and 5533 leg images from 3250 mosquito images each 
belonging to the three genera-Aedes 100, 300, Anopheles 
115, 315 and Culex 120, 320. Subsequently, 20% and 10% 
of these images were separated out for validation and testing 
respectively. 

Validation Accuracy and Testing Accuracy: Table 5 sum­
marizes the results for each of the four anatomy (thorax, 
abdomen, wing and leg) based models trained to predict the 
genus category of a given mosquito image. The classifica­
tion accuracies presented are those wherein the validation 
loss did not decrease for 30 consecutive epochs, after which 
training was concluded. The classification accuracies pre-
sented in the table show the recall (proportion of correctly 
identified images within each class) value of each class. The 
AUC (area under the curve) value for ROC (receiver oper-

65 ating characteristic) curve for thorax, abdomen, wing and 
leg models on testing dataset are 0.90, 0.86, 0.82, and 0.76 
respectively. The AUC value is equal to the probability that 
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a classifier will rank a randomly chosen positive instance 
higher than a randomly chosen negative one (assuming 
'positive' ranks higher than 'negative'). FIG. 4 shows con­
fusion matrix 400 and FIG. 5 shows the ROC curve 500 of 
the testing sets for each anatomy model. 

Aggregated Results from All 4 Anatomy Based Models 
This section presents the aggregated genus classification 
results from anatomy based models by combining their 
outputs. In order to do that, the model randomly selected 300 
mosquito images evenly distributed among the three genus 
from the test dataset. Next, the aim was to compute the 
probability of each anatomy image belonging to a particular 
genus-Aedes 100, 300, Anopheles 115, 315 and Culex 120, 
320-using respective anatomy models. Once the indepen­
dent genus probability is collected from each anatomy 
model, a soft-voting [8] technique was ensued to make the 
final classification decision. In a soft-voting technique, the 
probability of each genus class obtained from each anatomy 
model is aggregated and, whichever class gets the highest 
probability gets selected as the final genus class. This 
method achieved 91.3% accuracy on 300 mosquito speci­
mens selected from the test dataset. 

FIG. 6 shows the confusion matrix 600 and FIG. 7 shows 

12 
This disclosure, therefore, illustrates a Deep Neural Net­

work Framework to extract anatomical components, such as 
but not limited to, thorax, wings, abdomen and legs from 
mosquito images. The technique is based on the notion of 
Mask R-CNN 800 of FIG. 8, wherein artificial intelligence 
iteratively learns feature maps 808 from images 802, 
emplaces anchors (shown as bounding boxes 812 in the 
Figures but can be any shape) around foreground compo­
nents, followed by segmenting 820 and classification 824 of 

10 pixels corresponding to the anatomical components within 
anchors. In some embodiments, results of this disclosure 
show that the techniques are favorable when interpreted in 
the context of being able to glean descriptive morphological 

15 markers for classifying mosquitoes. 
A general discussion of CNN s and associated terminology 

can be found in numerous references cited below. For 
example, Reference 12 (Stewart) explains how filters, made 
of multiple kernels (weighted matrices) are convolved onto 

20 original images to create feature maps of numerous layers 
and adaptable data density. Shepard explains using the 
feature maps to pool certain layers with techniques such as 
max pooling, that separates out those feature maps with 

the ROC curve 700 of testing sets for each anatomy model. 
25 

The AUC value of ROC curve is 0.93. 

maximum values to reduce complexity. Rectified Non-Lin­
ear Unit (Re-LU) data sets are added to the feature maps to 
identify areas that should be accounted for but were missed 

TABLE 5 

Validation and Testing Set Accuracy 

Validation Set Testing Set 
Anatomy (%) (%) 

Thorax 88.41 87.33 
Abdomen 81.05 81 
Wing 78.18 75.80 
Leg 70.61 68.02 

Discussions on Results: While compiling our results, we 
made few interesting observations. First off, the accuracy 
computed on training, validation and testing images from all 
the four models are virtually identical as shown in Table 5. 
It demonstrates that the models are robust and neither 
overfitted nor underfitted, two most common problems in 
any machine learning models. Secondly, this disclosure 
recognized that a cost sensitive learning to reduce the 
biasness from the data helped us to secure higher AUC value 
from the ROC curve shown in FIGS. 4-7. A confusion matrix 
derived from every model have better accuracy for Anoph­
eles genus 115. It is generally true that even for experts, 
visually recognizing Anopheles (a malaria vector) is easy 
because of its black thorax, abdomen and distinct wings with 
dark spots. Aedes 100 generally confuses with Anopheles 
due to their dark colors. Similarly, Aedes confuses with 
Culex 120 because Aedes infirmatus species looks similar to 
Culex genus. Third, the ensemble model has outperformed 
each of independent anatomy models as well as previous 
models discussed in this paper. The examples herein show 

30 

35 

when the changes from one pixel to the next were below a 
filtering threshold. In very simplistic terms, the Re-Lu is an 
activation function operated on the image to produce layers 
that may be appended to the feature maps as shown in FIG. 
8. Generally, in some non-limiting embodiments, the Re-LU 
may retain a certain filter's value at a respective output 
matrix index or insert a zero if that certain index value is 
negative. The overall concept of a convolutional neural 
network, therefore, incorporates convolutional layers as 
feature maps of the original image, pooling layers and ReLU 
layers for added detail, as well as fully connected layers that 
are data rich outputs that are combined. As noted at Ref. 12 
(Stewart), the fully connected layers, such as those shown in 

40 the non-limiting example of FIG. 8, aggregate all informa­
tion into a finally replicated image. 

This disclosure presents a system to design state of the art 
AI techniques, namely techniques based on Mask Region­
Based Convolutional Neural Networks, to extract anatomi-

45 cal components of mosquitoes from digital images and 
archiving them permanently based on genus, species and 
other taxonomies. Investigators using the techniques of this 
disclosure have generated close to 30,000 digital images of 
mosquitoes (taken via smartphones) that are tagged based on 

50 genus and species type. Once anatomies of interest are 
extracted, this disclosure explains novel AI techniques to 
design a model that can recognize genus and species types 
of mosquitoes. Should the methods and systems described 
herein be popular among citizens and experts, and if inves-

55 tigation agencies can recruit entomologists to use these 
techniques, there is every expectation to globally scale up 
the effort to include many more mosquito types and improve 
models over time. the results for a designed, trained and evaluated anatomy 

based deep neural network models for mosquito genus 
classification from smartphone images. The neural network 60 

models are based on bilinear CNN architecture that helped 
overcome low intra-class variance problem. Additionally, 
anatomy segmentation made models robust against diverse 
background and, poor camera and image quality. These 
results, and the right contexts in which the results should be 65 

interpreted, give the confidence that the proposed system is 
indeed practical. 

In some aspects, the present disclosure relates to comput­
erized apparatuses, computer implemented methods, and 
computerized systems that use digital image analysis to 
identify species of insect specimens, such as, but not limited 
to mosquitos. The disclosure presents a system wherein a 
user ( expert or an ordinary citizen) takes a photo of a 
mosquito or other pests, using a smart-phone, and then the 
image is immediately sent to a central server along with GPS 
information data of the smart-phone. 
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boxes 812, 817 are organized pursuant to a region proposal 
network 816 for each feature of interest. As noted above, the 
examples of the figures are not limiting, as the bounding 
boxes may take any shape, including but not limited to 
rectangular. In one non-limiting example, the bounding 
boxes 812, 817 are proposed as shown at Ref. 816 based 
upon computer driven systems learning from the training 
sets that gradient changes in the pixels of respective con­
volved image layers may correspond to a certain anatomical 

The server will implement algorithms described in this 
disclosure to a) identify the genus of the mosquito; b) 
identify the species of the mosquito; c) separate the body 
parts of the image into objects of interest like wings, legs, 
proboscis, abdomen, scutum etc.; d) give feedback on spe­
cies and genus back to user, along with information as to 
what diseases the species carry, and more interesting infor­
mation like flight range etc. Potential uses are in mosquito 
identification, since it is a painful and cognitively demand­
ing problem now. School districts could also use this soft­
ware application to teach kids about biology and other areas 
of science, given that these kinds of scientific analysis skills 
may eventually be mandatory for schools in many areas. 
Defense and Homeland Security agencies and other govern­
ment agencies may see a need for the computerized appli­
cation described herein. 

10 feature if the gradient occurs in a certain area of the 
convolved image layer. The systems and methods utilize 
regressive processes, loss theories, and feedback from one 
feature map to the next to make the bounding boxes more 
and more precise and more tailored to one feature of interest 

15 (e.g., a thorax, a leg, an abdomen, a wing for an insect). 

One non-limiting value proposition of this disclosure is 
the ability to bypass humans (that peer through a microscope 
currently) for classification, and instead use digital cameras 
and proposed techniques for automated classification of 20 

genus and species type. A secondary value proposition is the 
ability of a system with large scale citizen and expert 
generated imagery, with tagging, to start digitizing anato­
mies of mosquitoes across the globe. This database could 
prove invaluable for training, and global information sharing 25 

in the context of mosquito, and especially vector surveil­
lance. 

Although example embodiments of the present disclosure 
are explained in detail herein, it is to be understood that other 
embodiments are contemplated. Accordingly, it is not 30 

intended that the present disclosure be limited in its scope to 
the details of construction and arrangement of components 
set forth in the following description or illustrated in the 
drawings. The present disclosure is capable of other embodi­
ments and of being practiced or carried out in various ways. 35 

For example, the test results and examples all pertain to 
identification of genus and species of mosquitos from the 
mosquito traits and features extracted from digital images. 
The techniques and concepts utilized and claimed in this 
disclosure, however, are not limited to mosquitos, but can be 40 

used with other kinds of identification processes for other 
animals, humans, plants and the like. 

ResNet has been generally described at He, Kaiming, 
Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep 
residual learning for image recognition." In Proceedings of 45 

the IEEE conference on computer vision and pattern recog­
nition, pp. 770-778. 2016, which is incorporated by refer­
ence in its entirety as if set forth fully herein and cited at Ref. 
33. ResNet is characterized in part as having a very deep 
network and introduces a residual connection to get the input 50 

from the previous layer to the next layer. The residual 
connection helps in solving gradient vanishing problems by 
detecting the smallest of differences between layers of the 
convolution. The next step is to design an object detector 
network that does three tasks: classifying the bounding 55 

boxes 210, 220, 230, 240 with respective anatomies, tight­
ening the boxes, and generating a mask 818 (i.e., pixel-wise 
segmentation 820) of each anatomical component. In con­
structing the architecture of the object detector network, 
non-limiting examples of this disclosure have used per-pixel 60 

sigmoid, and binary cross-entropy loss function (to identify 
the "k" anatomical components) and rigorously train them. 

As shown in FIG. 8, the systems and methods herein 
include applying bounding boxes 817 that are tailored to 
mark the feature maps 808 for respective features of the 65 

image, such as respective anatomical portions of a mosqui­
to's body in the examples of this disclosure. The bounding 

Suggested separations, or segmenting, of pixels correspond 
to these features of interest. 

In certain non-limiting embodiments, the process of hon­
ing in the bounding boxes 812, 817 for respective sets of 
anatomical pixels making up a body part is paired with an 
alignment process 814 that ensures that the output of the 
region proposal network 816 still matches outlines set forth 
in the original feature maps 808. Once this alignment is 
complete, and as shown in the non-limiting example of FIG. 
8, the systems and methods disclosed herein are subject to 
masking operations, or pixel extraction, in a second convo-
lutional neural network 818. The second convolutional neu­
ral network provides segmented images 820 in which certain 
examples result in anatomical pixels corresponding to a 
thorax, abdomen, wing, and leg of an insect. The output of 
the bounding boxes 812 applied by the region proposal 
network 816 is also fed to fully connected neural network 
layers 822. It is notable that the second convolutional neural 
network 818 utilizes convolutional layers that are filtered so 
that each "neuron" or matrix index within a data layer 
subject to a convolution are separately calculated and more 
sparse. The fully connected layers 822 track each prior layer 
more closely and are more data rich. The last fully connected 
layer is transmitted to both a classifier 824 and a boundary 
box regressor 826. The fully connected layers 822 are 
actually tied to each other layer by layer, neuron by neuron 
as shown by the arrows. The final fully connected layer 834 
is the output layer and includes all data for all layers. In 
separate parallel operations, a boundary box regressor 826 
and a classification processor 824 are applied to each layer 
of the first convolutional neural network 806 and/or the 
second convolutional neural network 818. The bounding 
box regressor 826 utilizes error function analyses to regres­
sively tighten the bounding boxes 812 more accurately 
around a respective feature of interest. This kind of feedback 
loop 850 ensures that the bounding boxes 812, 817 of the 
region proposal network 816 provide convolved image 
layers that are distinct for each feature sought by the feature 
maps 808. The classifier 824 provides automated comput­
erized processes to identify and label respective sets 828 of 
anatomical pixels identifying each anatomical part of the 
subject insect from the original image 802. 

The system utilizes the processor or other computers to 
apply anchors 812, 817 to the feature maps 808, wherein the 
anchors identify portions of respective layers of image data 
in the feature maps that contain respective anatomical pixels 
for respective body parts. In other words, the feature maps 
may be multidimensional layers of image data, and the 
system can operate on individual layers of image data or 
multiple sets of layers of image data that have resulted from 
the first convolutional neural network 806. The anchors may 
take the form of any polygon that bounds a desired set of 
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anatomical pixels within images, feature maps, or layers of 
image data. In one non-limiting example, the anchors are 
bounding boxes that are generated by the computer proces­
sor and shown on a graphical display unit as being within or 
superimposed on the images. The software further includes 
an alignment function 814 to align layers having anchors 
812, 817 thereon with the original feature maps. 

The system uses these anchors in generating a mask 818A 
that segments the respective anatomical pixels from the 
respective layers of image data. Generating the mask may 10 

include applying a second convolutional neural network 
818B to the respective layers, wherein the second convolu­
tional neural network segments the anatomical pixels 
according to a corresponding respective body part. 

The mask allows for extracting fully connected layers 822 15 

from the respective layers that have had the first convolu­
tional neural network 806 applied thereto, and the system is 
further configured for applying the fully connected layers to 
a regressor network 826 and a classification network 824, 
wherein generating the mask for segmenting, applying the 20 

fully connected layers to a regressor network, and applying 
the fully connected layers to a classification network are 
parallel operations conducted by the software. In certain 
non-limiting embodiments generating the mask includes 
applying a second convolutional neural network to the 25 

respective layers, wherein the second convolutional neural 
network segments the anatomical pixels according to a 
corresponding respective body part. 

16 
versions with labels of anatomical component names 
thereon, and wherein the database stores respective genus 
and species information with corresponding data about 
respective genera and species. 

The system embodiment may be implemented with at 
least one computer that performs a computerized method of 
extracting information about anatomical components of a 
living creature from an image. The images may include 
digital images of insects or other animals or even inanimate 
objects, wherein the digital images include views ofrespec­
tive insects, animals, or inanimate objects from directly 
above the specimen and from side angles relative to a 
background holding the respective specimens. By training a 
mask-region based convolutional neural network with a set 
of training images, segmented with computerized algo­
rithms, the method begins by identifying ground truth ana-
tomical components to a set degree of accuracy. The training 
for the convolutional neural networks used in this disclosure 
generally includes classifying respective anatomical com­
ponents in the training images and comparing the training 
images to the ground truth images. By tightening bounding 
boxes surrounding the anatomical components in the digital 
images, the method learns how to maximize efficiency and 
accuracy in ultimately generating a mask for use in extract­
ing information of a second set of images, such as feature 
maps that have been previously created. For forming the 
ground truth images, the computerized algorithm may utilize 
an image annotator tool configured for manual operation. 
The training iteratively updates hyperparameters that target In some non-limiting embodiments, the parallel opera­

tions occur simultaneously. 30 anatomical pixels in a training data set. This method has a 
proven track record of tracking, identifying, and archiving 
genera and species identifying data for a plurality of species 
of a plurality of genera of insects. 

The regressor network 826 is a software program imple­
mented by a computer to calculate error values regarding 
iterative positions for the anchors in the respective layers. 
The system uses the error values in a feedback loop 850 to 
tighten the anchors 812, 817 around anatomical pixels 35 

corresponding to a respective body part. The regressor 
network and associated computer-implemented software 
calculates error values regarding iterative positions for the 
anchors in the respective layers and wherein the error values 

In one non-limiting embodiment, a system 200 for iden­
tifying a genus and species of an insect includes using an 
imaging device, such as one of the above noted "smart" 
phones and computer devices gathering digital images. 
These devices are configured to generate images 250 of the 
insect at issue in a convenient manner, possibly even by a lay 

are derived from a binary cross entropy loss function or a 40 

focal loss function. 
person. A computer processor 902 is connected to memory 
904 storing computer implemented commands in software. 

The anchors 812, 817 may be bounding boxes, or any 
other shape, originating from a region proposal network 816 
receiving the feature maps 808 as respective layers of image 
data, and the feedback loop 850 transmits error values from 
the regressor network 826 to the region proposal network 
817 to tighten the boxes onto appropriate pixels correspond­
ing to the respective body parts. The region proposal net­
work is an image processing software implementation that 
utilizes data from the feature maps to predict probable 
portions of images and layers of images that contain ana­
tomical pixels corresponding to an insect body part. 

The classification network 824 is a software tool imple­
mented by a computer for generating classification output 
images 828, and in some embodiments, these classification 
output images include updated versions of original images 
with bounding polygons 812, 817 therein, labels for ana­
tomical component names thereon, and even color coding as 
shown in the tables that may aid in genus and species 
identification. The example embodiments herein shows the 
system identifying insects such as a mosquito and anatomi­
cal component names including wings, legs, thorax, and 
abdomen corresponding to the respective body parts. In 
some non-limiting embodiments, the classification network 
utilizes a per-pixel sigmoid network. In non-limiting uses, 
the system populates a database storing tested outputs of the 
classification network, wherein the outputs include image 

The memory 904 receives the images 250 and the software 
implements a computerized method with the respective 
images. The method includes the steps of using a computer 

45 900, the computer processor 902, computer memory 904, 
and even networked computer resources for applying a first 
convolutional neural network 205 to the respective images 
to develop at least a first feature map 210 and a second 
feature map 220 based on anatomical pixels at correspond-

50 ing image locations (I) in the respective feature maps. The 
anatomical pixels correspond to a body part of the insect. 
The computer 200 then proceeds to calculate an outer 
product of the first feature map and the second feature map 
and forming an integrated feature map 230 from the first 

55 feature map 210 and the second feature map 220. The 
artificial intelligence of this disclosure is programmed to 
extract fully connected layers 822 from respective sets of 
integrated feature maps that have had the first convolutional 
neural network applied thereto. By applying the fully con-

60 nected layers to a classification network the genus and the 
species of the insect may be identified. 

The convolutional neural networks operate in a loop that 
converges according to criteria and thresholds set by a user, 
so the computers of this disclosure are configured to calcu-

65 late at least respective first feature maps 210 and respective 
second feature maps 220 for a plurality of corresponding 
image locations (I) throughout each of the gathered images. 
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This allows for the system to calculate respective outer 
products from the respective first feature maps and respec­
tive second feature maps and develop respective integrated 
feature maps 230 from the outer products. The plurality of 
corresponding image locations collectively include a desig­
nated number of pixels from a respective image gathered by 
the imaging device and resized to include at least the 
designated number of pixels. As noted above, the first 
feature map and the second feature map are selected from 
different layers of calculations within the first convolutional 
neural network. 

In another non-limiting embodiment, a system for iden­
tifying a genus and species of an insect includes an imaging 
device configured to generate images of the insect. A com­
puter processor is connected to memory storing computer 
implemented commands in software, and the memory 
receiving the images 250, 802, wherein the software imple­
ments a computerized method by applying a first convolu­
tional neural network 210 to the respective images 250, 802 
to develop at least a first feature map 210 directed to 
anatomical pixels at corresponding image locations (I) in the 
respective images 250, 802, and the anatomical pixels 
correspond to a body part of the insect. A second convolu­
tional neural network 220 is also applied to the respective 
images to develop at least a second feature map directed to 
anatomical pixels at corresponding image locations in the 
respective images, said anatomical pixels corresponding to 
a body part of the insect. The system calculates an outer 
product of the first feature map and the second feature map, 
forming an integrated feature map 230 from the first feature 
map and the second feature map. As noted above, the 
integrated feature maps may be each one dimensional fea­
ture maps. By extracting fully connected layers from respec­
tive sets of integrated feature maps that have had the first 
convolutional neural network and the second convolutional 
neural network applied thereto, a classification network 824 
can be configured for identifying the genus and the species 
of the insect. In this non-limiting embodiment, the system 
applies the two convolutional neural networks 210,220 to an 
entirety of the image by calculating respective first feature 
maps and respective second feature maps for a plurality of 
corresponding image locations (subsets of anatomical pixels 
within the image), calculating respective outer products 
from the respective first feature maps and respective second 
feature maps, and developing respective integrated feature 
maps from the outer products. The plurality of correspond­
ing image locations collectively include the entirety of the 
image or cover a designated number of pixels from a 
respective image gathered by the imaging device and resized 
to include at least the designated number of pixels. In 
non-limiting embodiments, the first feature map and the 
second feature map are selected from different layers of 
calculations within the respective convolutional neural net­
works. 

Applying respective weights to the first feature map and 
the second feature map may provide for more equal distri­
butions of class representation in the calculations of the 
convolutional neural networks. In this regard, the weights 
may be higher weights for minority classes of the images. 
The method implemented by the system may include freez­
ing the respective weights for the duration of the method. In 
any event, the system has access to the above discussed 
validity and error analysis for each of the first convolutional 
neural network and the second convolutional neural net-

18 
This disclosure incorporates a computerized method of 

identifying a genus and species of an insect, the method may 
be performed by computerized instructions stored on a 
server, a computer, or any non-transitory computer readable 
media used for storing computer instructions for computer 
program products. The method includes the steps of acquir­
ing images of an insect and storing pixels data from the 
images in a computer memory in data communication with 
a computer processor and using the computer processor to 

10 perform steps of the method. The steps include, but are not 
limited to applying at least one convolutional neural network 
to the respective images to develop at least a first feature 
map and a second feature map based on anatomical pixels at 
corresponding image locations in the respective feature 

15 maps, said anatomical pixels corresponding to a body part of 
the insect; calculating an outer product of the first feature 
map and the second feature map; forming an integrated 
feature map from the first feature map and the second feature 
map; extracting fully connected layers from respective sets 

20 of integrated feature maps that have had the first convolu­
tional neural network applied thereto; and applying the fully 
connected layers to a classification network for identifying 
the genus and the species of the insect. 

The computer processor may also be configured to further 
25 perform additional steps including computing an importance 

factor for each feature map in an output image that has been 
a subject of the classification network and using a selected 
output image with the highest importance factor, compare 
the selected output image with the respective images to 

30 evaluate an accuracy level of the classification network. 
Overall, this disclosure is configured for applying at least 

one convolutional neural network that may include, but is 
not limited to, at least one Bi-Linear Convolutional Neural 
Network as described above. The Bi-Linear Convolutional 

35 Neural Network includes applying the first feature map and 
the second feature map to identify respective features from 
the images and applying a pooling function to an output of 
the Bi-Linear Convolutional Neural Network before apply­
ing the fully connected layers to the classification network. 

40 In some non-limiting embodiments, the method includes 
stopping the application of the at least one convolutional 
neural network upon a validation accuracy converging to a 
threshold value. The method may be characterized in part, 
and without limitation as applying the at least one convo-

45 lutional neural network to respective sets of anatomical 
pixels with each of the respective sets corresponding to a 
respective body part of the insect. The system merges a 
plurality of outputs corresponding to the respective sets of 
anatomical pixels and uses the plurality of outputs and 

50 making an aggregated decision on genus and species clas­
sification. 

In example implementations, at least some portions of the 
activities may be implemented in software provisioned on a 
networking device. In some embodiments, one or more of 

55 these features may be implemented in computer hardware 
900, provided external to these elements, or consolidated in 
any appropriate manner to achieve the intended functional­
ity. The various network elements may include software ( or 
reciprocating software) that can coordinate image develop-

60 ment across domains such as time, amplitude, depths, and 
various classification measures that detect movement across 
frames of image data and further detect particular objects in 
the field of view in order to achieve the operations as 

work, and the system may include computer implemented 65 

instructions for reducing a respective learning rate by a 
common factor that depends upon an error rate threshold. 

outlined herein. In still other embodiments, these elements 
may include any suitable algorithms, hardware, software, 
components, modules, interfaces, or objects that facilitate 
the operations thereof. 
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method, but does not exclude the presence of other com­
pounds, materials, particles, method steps, even if the other 
such compounds, material, particles, method steps have the 
same function as what is named. 

Furthermore, computer systems described and shown 
herein (and/or their associated structures) may also include 
suitable interfaces for receiving, transmitting, and/or other­
wise communicating data or information in a network envi­
ronment. Additionally, some of the processors 902 and 
memory elements 904 associated with the various nodes 
may be removed, or otherwise consolidated such that single 
processor and a single memory element are responsible for 
certain activities. In a general sense, the arrangements 
depicted in the Figures may be more logical in their repre­
sentations, whereas a physical architecture may include 
various permutations, combinations, and/or hybrids of these 
elements. It is imperative to note that countless possible 
design configurations can be used to achieve the operational 
objectives outlined here. Accordingly, the associated infra­
structure has a myriad of substitute arrangements, design 
choices, device possibilities, hardware configurations, soft­
ware implementations, equipment options, etc. 

Ranges may be expressed herein as from "about" or 
"approximately" one particular value to "about" or 
"approximately" another particular value. When such a 
range is expressed, exemplary embodiments include from 
the one particular value to the other particular value. As used 

10 herein, "about" or "approximately" generally can mean 
within 20 percent, preferably within 10 percent, and more 
preferably within 5 percent of a given value or range, and 
can also include the exact value or range. Numerical quan-

15 tities given herein can be approximate, meaning the term 
"about" or "approximately" can be inferred if not expressly 
stated. 

In some of example embodiments, one or more memory 
elements (e.g., memory can store data used for the opera- 20 

tions described herein. This includes the memory being able 
to store instructions (e.g., software, logic, code, etc.) in 
non-transitory media, such that the instructions are executed 
to carry out the activities described in this Specification. A 
processor can execute any type of computer readable 25 

instructions associated with the data to achieve the opera­
tions detailed herein in this Specification. In one example, 
processors ( e.g., processor) could transform an element or an 
article ( e.g., data) from one state or thing to another state or 
thing. In another example, the activities outlined herein may 30 

be implemented with fixed logic or programmable logic 
(e.g., software/computer instructions executed by a proces­
sor) and the elements identified herein could be some type 
of a programmable processor, programmable digital logic 
(e.g., a field programmable gate array (FPGA), an erasable 35 

programmable read only memory (EPROM), an electrically 
erasable programmable read only memory (EEPROM)), an 
ASIC that includes digital logic, software, code, electronic 
instructions, flash memory, optical disks, CD-ROMs, DVD 
ROMs, magnetic or optical cards, other types of machine- 40 

readable mediums suitable for storing electronic instruc­
tions, or any suitable combination thereof. 

These devices may further keep information in any suit­
able type of non-transitory storage medium 912 (e.g., ran­
dom access memory (RAM), read only memory (ROM), 45 

field programmable gate array (FPGA), erasable program­
mable read only memory (EPROM), electrically erasable 
programmable ROM (EEPROM), etc.), software, hardware, 
or in any other suitable component, device, element, or 
object where appropriate and based on particular needs. Any 50 

of the memory items discussed herein should be construed 
as being encompassed within the broad term 'memory 
element.' Similarly, any of the potential processing ele­
ments, modules, and machines described in this Specifica­
tion should be construed as being encompassed within the 55 

broad term 'processor.' See FIG. 9 for a schematic example 
showing a computing environment for input devices 908A, 
such as imaging devices described above, and output 
devices 908B such as smartphones. This computer environ­
ment is amenable to various network and cloud connections 60 

as shown at Ref. 906. 
It must also be noted that, as used in the specification and 

the appended claims, the singular forms "a," "an" and "the" 
include plural referents unless the context clearly dictates 
otherwise. By "comprising" or "containing" or "including" 65 

is meant that at least the named compound, element, particle, 
or method step is present in the composition or article or 

In describing example embodiments, terminology will be 
resorted to for the sake of clarity. It is intended that each 
term contemplates its broadest meaning as understood by 
those skilled in the art and includes all technical equivalents 
that operate in a similar manner to accomplish a similar 
purpose. It is also to be understood that the mention of one 
or more steps of a method does not preclude the presence of 
additional method steps or intervening method steps 
between those steps expressly identified. Steps of a method 
may be performed in a different order than those described 
herein without departing from the scope of the present 
disclosure. Similarly, it is also to be understood that the 
mention of one or more components in a device or system 
does not preclude the presence of additional components or 
intervening components between those components 
expressly identified. 
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The invention claimed is: 
1. A system for identifying a genus and species of an 

insect, the system comprising: 
an imaging device configured to generate images of the 

insect; 

15 

20 

a computer processor connected to a memory storing 
computer implemented commands in software, the 
memory receiving the images, wherein the software 25 

implements the following computerized method with 
respective images: 

22 
a computer processor connected to memory storing com­

puter implemented commands in software, the memory 
receiving the images, wherein the software implements 
the following computerized method with respective 
images: 

inputting the respective images to a first convolutional 
neural network, wherein at least a first feature map 
directed to anatomical pixels at corresponding image 
locations in the respective images is obtained from the 
first convolutional neural network, said anatomical 
pixels corresponding to a body part of the insect; 

inputting the respective images to a second convolutional 
neural network, wherein at least a second feature map 
directed to anatomical pixels at corresponding image 
locations in the respective images is obtained from the 
second convolutional neural network, said anatomical 
pixels corresponding to the body part of the insect, 
wherein each of the first convolutional neural network 
and the second convolutional neural network is trained 
with a plurality of training images that each depict a 
single insect body part; 

assigning a respective weight to each of the first feature 
map and the second feature map based on a class 
associated with the respective body part of the insect; 

calculating an outer product of the first feature map and 
the second feature map; 

forming an integrated feature map from the outer product 
of the first feature map and the second feature map; and 

identifying the genus and the species of the insect based, 
at least in part, on the integrated feature map. 

6. The system of claim 5, further comprising calculating 
respective first feature maps and respective second feature 
maps for a plurality of corresponding image locations, 
calculating respective outer products from the respective 

inputting the respective images to a first convolutional 
neural network, wherein at least a first feature map is 
obtained from a first layer of the first convolutional 30 

neural network and a second feature map is obtained 
from a second layer of the first convolutional neural 
network, wherein each of the first feature map and the 
second feature map is based on a subset of anatomical 
pixels at a corresponding image location, said subset of 
anatomical pixels corresponding to a body part of the 
insect, and wherein the first convolutional neural net­
work is trained with a plurality of training images that 
each depict a single insect body part; 

35 first feature maps and respective second feature maps, and 
developing respective integrated feature maps from the outer 
products. 

assigning a respective weight to each of the first feature 
map and the second feature map based on a class 
associated with the respective body part of the insect; 

calculating an outer product of the first feature map and 
the second feature map; 

forming an integrated feature map from the outer product 
of the first feature map and the second feature map; and 

identifying the genus and the species of the insect based, 
at least in part, on the integrated feature map. 

2. The system of claim 1, further comprising calculating 
respective first feature maps and respective second feature 
maps for a plurality of corresponding image locations, 
calculating respective outer products from the respective 
first feature maps and respective second feature maps, and 
developing respective integrated feature maps from the outer 
products. 

3. The system of claim 2, wherein the plurality of corre­
sponding image locations collectively comprises a desig­
nated number of pixels from a respective image gathered by 
the imaging device and resized to include at least the 
designated number of pixels. 

4. The system of claim 1, wherein the first feature map and 
the second feature map are selected from different layers of 
calculations within the first convolutional neural network. 

5. A system for identifying a genus and species of an 
insect, the system comprising: 

an imaging device configured to generate images of the 
insect; 

7. The system of claim 6, wherein the plurality of corre­
sponding image locations collectively comprise a designated 

40 number of pixels from a respective image gathered by the 
imaging device and resized to include at least the designated 
number of pixels. 

8. The system of claim 5, wherein the first feature map and 
the second feature map are selected from different layers of 

45 calculations within the respective convolutional neural net­
works. 

9. The system of claim 5, wherein the integrated feature 
maps are each one dimensional feature maps. 

10. The system of claim 5, further comprising resizing the 
50 images to a common size. 

11. The system of claim 5, further comprising, for each of 
the first convolutional neural network and the second con­
volutional neural network, reducing a respective learning 
rate by a common factor that depends upon an error rate 

55 threshold during training of the respective convolutional 
neural network. 

60 

65 

12. A computerized method of identifying a genus and 
species of an insect, the method comprising: 

acquiring images of an insect and storing pixel data from 
the images in a computer memory in data communi­
cation with a computer processor; 

using the computer processor to perform the following 
steps of the method: 

inputting the images to at least one convolutional neural 
network to, wherein at least a first feature map is 
obtained from a first layer of the at least one convolu­
tional neural network and at least a second feature map 
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is obtained from a second layer of the at least one 
convolutional neural network, wherein each of the first 
feature map and the second feature map is based on a 
subset of anatomical pixels at a corresponding image 
location in the respective feature maps, the subset of 
anatomical pixels corresponding to a body part of the 
insect, and wherein the at least one convolutional 
neural network is trained with a plurality of training 
images that each depict a single insect body part; 

assigning a respective weight to each of the first feature 
10 

map and the second feature map based on a class 
associated with the respective body part of the insect; 

calculating an outer product of the first feature map and 
the second feature map; 

forming an integrated feature map from the first feature 
map and the second feature map; and 15 

identifying the genus and the species of the insect based, 
at least in part on the integrated feature map. 

24 
13. The computerized method of claim 12, wherein the at 

least one convolutional neural network comprises at least 
one Bi-Linear Convolutional Neural Network. 

14. The computerized method of claim 13, wherein the at 
least one Bi-Linear Convolutional Neural Network com­
prises a pooling function or layer. 

15. The computerized method of claim 12, wherein the at 
least one convolutional neural network is trained until an 
accuracy threshold value is met or exceeded. 

16. The computerized method of claim 12, further com­
prising: 

merging a plurality of outputs corresponding to the 
respective sets of anatomical pixels; 

using the plurality of outputs and making an aggregated 
decision on genus and species classification. 

* * * * * 
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