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Abstract 
The Knox method for detecting space-time interactions of point data has been widely used in infectious 
Epidemiology, and crime mapping.  However, the parametric methods (chi-square, Poisson) used for testing 
the significance of space-time interaction suffer from a major flaw, the violation of the assumption of 
independence of pairs.  A Monte Carlo method that consists of random switching of the time labels of points is 
also flawed because in the case of heavy clustering of either dimension (space or time) the power of the test is 
reduced due to the switching of already close labels.  Recently, a new Monte Carlo method for testing 
significance has been proposed which consists of completely random sampling in space and time, i.e., an 
unconditional extension of the Knox test.  Comparative evaluation of these statistical tests and empirical 
methodologies has never been conducted.  Here we present the first comparative examination between the 
chi-square test and the random Monte Carlo unconditional extension of the Knox test.  We use a space-time 
version of the kappa statistic for evaluation and show that the results of the unconditional Monte Carlo 
methodology are significantly different and superior to those of the chi-square test. 
 
 
1. Introduction 
The occurrence of human disease is often presented 
as point data.  Those points can also be labeled with 
time (or date) of appearance.  It is often of interest 
whether there is clustering in either the space and/or 
time dimension for these points.  Geographers 
usually examine the spatial clustering component 
(Heining, 2003) and epidemiologists are more 
interested in the temporal sequence of occurrence of 
the disease events (Lawson, 2001).  Clustering is 
often only evident if both dimensions are examined 
simultaneously (Knox, 1963).  Knox (1963, 1964, 
1964b) introduced a way of detecting spatial and 
temporal interaction between disease incidents and 
inferring an infectious process from this space-time 
interaction (Andersson et al., 1995 and Alexander, 
1992). The Knox test consists of creating all 
possible pair combinations of data points found in a 
spatial and temporal domain and then examining the 
interpoint distances in space and time and 
classifying the pairs as close or not in either space or 
time.  The total number of pairs found close in space 
and time is compared to what would be expected by 
chance given the individual number of close space 
and close time pairs.  Knox (1963) initially 
proposed a chi-square test for evaluating the 
significance of the interaction and then a Poisson 
test (1964).  Both of these tests require that the data 
(pairs) being evaluated are part of an independent  

 
process.  Because the pairs are formed by a finite 
number of points and they share points, this 
requirement is violated (Knox, 1964).  Moreover, 
excess clustering in either the space or time 
dimension of the data can exacerbate this violation, 
by resulting in underestimation of the variance. 
Mantel (1967) proposed a solution to the 
significance test that involved the Monte Carlo 
switching of the space-time labels of the data points 
and then ranking the actual number of close space-
time pairs to the Monte Carlo distribution.  Barton 
and David (1966) found this to result in an 
approximate Poisson distribution but this only 
applied to that specific case (Williams, 1984).  
However, with heavy clustering in either the space 
or time dimension the switching of already close 
labels tends to influence the variance of the resulting 
Monte Carlo distribution.  Theophilides et al., 
(2006) presented a different remedy, using a 
completely random Monte Carlo distribution of 
points within the spatial and temporal domain of the 
dataset.  The probability of randomness was defined 
as the proportion of the upper right hand tail of the 
pair distribution whose number of close space-time, 
close space and, close time pairs were greater than 
or equal to the respective actual counts.  This test is 
thus an unconditional extension of the Knox test, 
taking directly into account the distribution of the 



marginal totals. While there is widespread belief 
that disease distribution is rarely, if ever, completely 
random, this presumption fails to account for the 
dynamic nature of rapidly spreading phenomena. 
The spatial and temporal characteristics of disease 
incidents vary in measurement system and units, and 
scale.  Of these, scale is probably one of the most 
important defining concepts of Geographic analysis.  
Yattaw (1999) has presented an organizational 
framework of geographic movement over time and 
suggested scale as a defining element of space-time 
analyses.  While the non-randomness assumption 
may hold for slow appearing disease incidents 
where the population examined is nearly static (i.e. 
leukemia), it fails for phenomena that are dynamic 
and operate on finer temporal and/or spatial scales.  
In the case of West Nile virus and birds, the 
temporal scale influences the consideration of bird 
movement.  This in effect influences the cluster 
analysis in space and time that could otherwise be 
examined separately.  Hence the need for a test of 
space-time randomness arises. Most of the 
applications of the Knox test have been performed 
retrospectively in single areas, but recently 
Rogerson (2001) has presented a prospective local 
area version of the test.  Theophilides et al., (2003, 
2004) implemented the Knox test dynamically over 
local areas and customized it to model a process, the 
amplification cycle of West Nile virus in the wild 
(DYCAST methodology).  West Nile virus is a 
mosquito born agent that under favorable 
environmental conditions cycles and amplifies 
between birds and mosquitoes.  When the cycle of 
infection is intense, significant amplification of the 
virus numbers occurs and it spills-over to humans 
causing illness in the elderly and the immune-weak 
(Campbell, 2001).  In Theophilides (2006), the 
ability of the unconditional extension of the Knox 
test (with a Monte Carlo methodology) to predict 
human risk for West Nile virus was quantified using 
a kappa methodology and proved that the method 
models the amplification and transmission to 
humans process. Here we use the same methods and 
data to compare the Monte Carlo unconditional 
Knox results of Theophilides et al.,(2006) with a 
chi-squared test in terms of their discriminatory 
power to “predict” human risk.  We further directly 
evaluate the agreement between the two tests in 
terms of identifying West Nile risk areas. 
 
2. Materials and Methods 
Data were provided by the Chicago Department of 
Health and included the location of dead birds 
(mostly crows and blue jays, n = 3837, henceforth 
called the data points) and their date of reporting, 
and the location of residence and date of onset of 

illness of humans (n=215) confirmed with West 
Nile infection. 
 
2.1 Methods 
We followed the DYCAST method of Theophilides 
et al., (2003, 2006).  The DYCAST method 
partitions space into overlapping local units of 
ecologically relevant spatial and temporal domains 
that consist of a 1.5 mile radius and the 21 days 
prior to the current date.  This space-time domain 
was centered about each 0.5x0.5mile grid cell that 
was laid across the study area (City of Chicago). A 
Knox analysis was run using all the data points 
found within the spatial and temporal domains of 
each cell centroid for each day between June 30th, 
2002 and October 5th, 2002.  Two probability values 
were recorded for each day for each cell; one using 
a chi-square test and one using a Monte Carlo 
simulation (Theophilides et al., 2006). 
 
2.2 Knox Test 
The Knox test statistic is mathematically expressed 
as: 
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Where: sij and tij are 1 if the pair formed by the ith 
and ith point is close in space (interpoint spatial 
distance <= s) and time (interpoint temporal 
distance <= t) respectively, and n is the total number 
of points found in the geographic and temporal 
space (Table 1).  The critical spatial distance was 
defined as 0.25 miles (s=0.25m) and the critical 
temporal distance was 3 days (t=3 days). 
 

Table 1: Knox Space Time Correspondence 
 

Knox 
matrix 

Space 

Time  Close Not 
Close 

Close o11 o12 
Not 
Close 

o21 o22 
 

 
2.3 Chi-Square Test 
To assess the significance of the test statistic using a 
chi-squared test a matrix is formed and the resulting 
chi-squared value was inverted based on a chi-
squared function with one degree of freedom to 
obtain a probability (Ross, 1999). 
 
2.4 Unconditional Monte Carlo Test 
For a number of pairs n found within the Spatial 
Domain and Temporal Domain, 5000 random sets 
of n points were generated within the same domain.  



For each set, the number of close space-time pairs 
(st=o11), the number close space pairs (s=o11 + o21) 
and, the number of close time pairs (t=o11 + o12) 
were counted.  Based on the distribution of these 
5000 random runs the probability level was assessed 
as: 
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Where S, T, and ST are the actual number of points 
found close in space, time, and both respectively.  
This unconditional formulation should be contrasted 
with that of the traditional Knox test where: 
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Hence 
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2.5 Comparison methodology 
In this research we are interested in evaluating the 
DYCAST results obtained with different statistical 
tests of the Knox method (chi-square and 
unconditional Monte Carlo) for assessing  (1) the 
discriminatory power of theses tests to successfully 
identify areas where human cases occurred prior to 
their onset of illness and (2) the agreement between 
them. To accomplish this we use a new 
implementation of the kappa test which has been 
adapted for a spatial and temporal domain 
(Theophilides et al., 2006).  The kappa test was 
introduced by Cohen (1960) as a means of 
measuring the agreement of classification of data 
into diagnostic categories between two judges (or 
raters) after chance agreement was excluded.  Later, 
Congalton and Mead (1983) implemented the kappa 
over spatial data in Remote Sensing as a means of 
assessing the accuracy of image classification. The 
general form of the kappa statistic is: 
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Equation 5 

Where: N is the total number of areas considered, 
and xii, xi+, x+i are the elements of the following 
matrix (Table 2): The sum of which amounts to N. 
 

Table 2: Kappa matrix 
 

 Rater 1 

Rater 2  Class 1 Class 2 
Class 1 x11 x12 
Class 2 x21 x22  

 
In the spatial and temporal implementation of kappa 
by Theophilides et al., (2006) a kappa value is 
calculated for all unique combinations of a range of 
days prior to onset of illness in humans and a range 
of temporal windows in order to find the date and 
duration of maximum non-chance agreement 
between DYCAST results and human illnesses.  The 
total number of cells for any unique combination of 
days prior to onset and a window is expressed as:  
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Where G is equal to 1181, the number cells of the 
Chicago grid and I is an indicator function which 
can be evaluated as follows: 

(1) I = 1 if for dates ( d+p days) to( d+p days 
+(w-1 days) there is at least one human 
case. where: p is the number of days prior 
to onset and w the window size. 

(2) I = 0 otherwise. 
The calculation of the kappa values and their 
respective chi-square test was done over a 
combination of p=0 to 21 and w=1 to 19. 
 
To evaluate direct non-chance agreement between 
the chi-square test and the unconditional Monte 
Carlo test, we summed all the cells with agreements 
(and disagreements) over the whole period and 
constructed a kappa Table as the one shown before. 
 
3. Results 
The results of the non-chance agreement between 
the human cases and the DYCAST results with the 
unconditional Monte Carlo method were presented 
in Theophilides et al., (2006). An example of a 
results map, showing a specific date of risk 
calculation with the knox statistic and future 
identification of risk areas (post-analysis) is shown 
in map 1.  

 



Table 3: Kappa agreement table 

19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

Days 21 -0.01 0.008 0.026 0.044 0.062 0.078 0.096 0.114 0.13 0.141 0.157 0.175 0.192 0.204 0.219 0.255 0.295 0.321 0.358

prior 20 0.037 0.054 0.072 0.091 0.107 0.125 0.143 0.164 0.18 0.197 0.215 0.233 0.251 0.267 0.298 0.333 0.354 0.382 0.381

19 0.082 0.1 0.118 0.135 0.153 0.171 0.192 0.213 0.231 0.25 0.268 0.288 0.307 0.336 0.366 0.387 0.408 0.414 0.41

18 0.124 0.142 0.158 0.176 0.195 0.215 0.236 0.258 0.277 0.295 0.315 0.334 0.361 0.388 0.405 0.423 0.425 0.429 0.419

17 0.166 0.182 0.2 0.218 0.238 0.258 0.28 0.302 0.321 0.34 0.36 0.385 0.409 0.425 0.442 0.446 0.45 0.455 0.456

16 0.205 0.222 0.24 0.26 0.28 0.301 0.323 0.345 0.364 0.384 0.407 0.43 0.445 0.461 0.468 0.475 0.48 0.498 0.503

15 0.237 0.255 0.275 0.295 0.316 0.338 0.359 0.381 0.401 0.423 0.445 0.46 0.474 0.482 0.491 0.499 0.512 0.528 0.526

14 0.27 0.289 0.31 0.33 0.352 0.373 0.395 0.417 0.439 0.46 0.474 0.488 0.496 0.506 0.515 0.529 0.543 0.555 0.564

13 0.302 0.322 0.343 0.364 0.384 0.406 0.428 0.453 0.473 0.486 0.499 0.508 0.517 0.527 0.541 0.554 0.563 0.579 0.577

12 0.334 0.354 0.375 0.395 0.416 0.437 0.461 0.484 0.497 0.51 0.518 0.527 0.536 0.549 0.562 0.57 0.583 0.591 0.584

11 0.363 0.383 0.403 0.423 0.444 0.467 0.488 0.504 0.517 0.524 0.532 0.541 0.552 0.563 0.57 0.58 0.584 0.587 0.566

10 0.39 0.409 0.429 0.449 0.47 0.491 0.506 0.521 0.529 0.536 0.543 0.553 0.561 0.567 0.576 0.578 0.58 0.575 0.558

9 0.413 0.432 0.451 0.472 0.492 0.506 0.52 0.53 0.537 0.543 0.551 0.558 0.562 0.568 0.57 0.571 0.566 0.559 0.535

8 0.435 0.453 0.473 0.491 0.505 0.518 0.527 0.537 0.543 0.549 0.554 0.557 0.561 0.562 0.562 0.557 0.555 0.545 0.526

7 0.453 0.472 0.49 0.503 0.515 0.524 0.532 0.541 0.547 0.55 0.551 0.555 0.554 0.553 0.549 0.546 0.542 0.534 0.503

6 0.471 0.487 0.499 0.511 0.519 0.527 0.535 0.543 0.546 0.546 0.548 0.547 0.545 0.541 0.538 0.534 0.531 0.516 0.49

5 0.484 0.495 0.506 0.513 0.52 0.527 0.535 0.541 0.54 0.541 0.539 0.536 0.531 0.528 0.523 0.52 0.514 0.498 0.468

4 0.49 0.499 0.506 0.513 0.519 0.526 0.531 0.533 0.534 0.531 0.527 0.522 0.517 0.511 0.507 0.5 0.494 0.474 0.441

3 0.493 0.498 0.504 0.51 0.516 0.52 0.521 0.521 0.517 0.513 0.506 0.5 0.493 0.486 0.479 0.471 0.46 0.433 0.393

2 0.491 0.495 0.5 0.505 0.509 0.509 0.507 0.504 0.499 0.492 0.485 0.476 0.469 0.46 0.452 0.441 0.422 0.391 0.359

1 0.488 0.492 0.496 0.499 0.499 0.497 0.492 0.487 0.481 0.473 0.464 0.456 0.447 0.438 0.429 0.412 0.395 0.375 0.365

0 0.483 0.486 0.488 0.488 0.486 0.481 0.475 0.468 0.461 0.452 0.443 0.433 0.424 0.414 0.399 0.383 0.373 0.359 0.332

Windows

 
 

Table 4: Comparison of Chi-square and 
Unconditional   Monte Carlo 

 
In Theophilides et al., (2006) the results were shown 
as a surface of values for variable size windows and 
days prior to onset (Figure 1, used with permission).  
Those results showed that consistent non-chance 
agreement of 50% occurred for a range of 
ecologically relevant days prior and windows (Table 
1, used with permission) From those results, 
Theophilides et al., (2006) deduced that peak 
viremia in the wild birds (corvids) occurs 15-16 
days prior to the onset of illness in humans.   

The structure of the surface also showed that bird 
deaths start to decrease after the peak period and 
consistently decrease up to the date of onset.  
Theophilides et al., (2006) attributed the human 
infections to the decrease of birds available for 
mosquito blood-meals and the subsequent turn of 
mosquitoes to humans at approximately day 7 prior 
to onset and proved the hypothesis first posed by 
Despommier, (2001). A similar surface showing the 
agreement between the DYCAST chi-square results 
and the human cases is shown in Figure 2.  The 
surface shows that the kappa values are lower than 
those of the unconditional Monte Carlo DYCAST 
results by approximately 0.4 (or a chance agreement 
difference of 40%).  The approximate structure of 
the surface remains the same but the highest kappa 
value of 0.1592 occurs for a window of 1 day for 11 
days prior to onset. The surface from the chi-square 
approximation of the Knox statistic retains the 
structure of gradual increase and decrease of kappa 
values.   

 Unconditional Monte Carlo 

Chi-
square 
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Figure 1: Monte Carlo resulting Kappa value surface 
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Figure 2: Chi-Sqare resulting in kappa value surface (In different angle from Figure 1.) 

 



 
Map1: DYCAST analysis for August 4th, 2002: risk areas in dark red, future date risk areas are in pink 

 
As the window decreases from 19 to 1 days, the 
peak kappa value shifts to higher days prior to onset, 
verifying the approximate time of highest viremia to 
be around 15 days prior.  However as the windows 
become smaller and reach two and one days the 
structure of the surface becomes inconsistent, even 
though the trend of the surface is retained.  This is a 
visual manifestation of the use of a chi-square test 
which assumes independence for testing a pair 
dependent dataset.  The same probably occurs for 
larger window sizes, but its only manifestation then 
are the lower kappa values.  The analysis with large 
window sizes includes more temporally 
autocorrelated cells that average out any 
fluctuations. The direct evaluation of non-chance 
agreement between the chi-square method and the 

unconditional Monte Carlo method for testing 
significance shows a kappa value of 0.52 (p < 
0.001).  This means that only about half the 
agreement between the two methods is not due to 
chance (Table 4) and that in general, both tests show 
the same space and time of bird clustering as 
significant by a rather high measure of non-chance 
agreement. Table 4 shows that only 47 cells were 
shown as at risk with the chi-square method and not 
with the Monte Carlo method.  In contrast, 10886 
cells were shown as at risk with the Monte Carlo 
method and not with the chi-square method.  This, 
combined with the high kappa value with the human 
cases (Figure 1) is evidence that the Monte Carlo 
method is a more sensitive measure of evaluating 
non-random space-time interaction and a more 



accurate one.  The largest number of cells in 
agreement between the two techniques was in the 
not at-risk category (97691, Table 4). 
 
4. Conclusion 
We have presented quantitative evidence that the 
widespread use of the chi-square test for evaluating 
the significance of space-time interaction of the 
Knox method (1964) is inappropriate.  For smaller 
granularities of time it renders results with a high 
degree of variability.  Knox (1964) first identified 
the potential pitfall of this statistic due to pair 
dependencies and Theophilides et al., (2003) 
reported this as a result of an indication from the 
results of a practical application. In the case of using 
the Knox method with DYCAST, the unconditional 
Monte Carlo method for evaluating significance, is 
more sensitive and gives results that more 
accurately follow West Nile virus activity.  This is 
shown by the rather high kappa measure of non-
chance agreement between the human cases and the 
results (Theophilides et al., 2006).  The non-chance 
agreement of the unconditional Monte Carlo 
DYCAST results with chi-square DYCAST results 
is almost 50% although both methods accurately 
show where activity has not occurred. We caution 
that more studies may be needed to fully understand 
the distribution of the Knox statistic both at the 
theoretical level and for practical applications. 
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